当前位置:首页 > 实用信息

金属顶刊双语导读丨Acta Mater. Vol.214,1 Aug. 2021(下)

2021-10-07 来源:GS_Metals

 

本期包含金属材料领域论文10,涵盖了马氏体、奥氏体、高温合金等,国内科研单位包括燕山大学、重庆大学、上海交通大学等(通讯作者单位)。

 

Vol. 214 目录

1. High pressure effect on the substructure and hardness of IF steel during martensitic transformation

高压对IF钢马氏体相变组织和硬度的影响

 

2. Interaction between hydrogen and solute atoms in {10-12} twin boundary and its impact on boundary cohesion in magnesium

{10-12}孪晶界处氢与溶质原子的相互作用及其对晶界结合力的影响

 

3. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification

凝固过程中枝晶生长和气孔演化的多相物理模型

 

4. Origins of size effects in initially dislocation-free single-crystal silver micro- and nanocubes

无位错单晶银微纳米立方体中尺寸效应的原因

 

5. Representative volume elements for plasticity and creep measured from high-resolution microscale strain fields

基于微观应变场的高分辨表征测量材料塑性和蠕变的代表体积元

 

6. Role of the local stress systems on microstructural inhomogeneity during semisolid injection

铸造过程中局部应力对微观组织不均匀性的影响研究

 

7. Segmentation of experimental datasets via convolutional neural networks trained on phase field simulations

利用相场模拟训练的卷积神经网络实现对实验数据集的图像分割

 

8. Studying the micromechanical behaviors of a polycrystalline metal by artificial neural networks

多晶金属微观力学行为的人工神经网络研究

 

9. Tailoring the metastable reversed austenite from metastable Mn-rich carbides

通过富锰碳化物调控亚稳逆相变奥氏体

 

10. Understanding creep of a single-crystalline Co-Al-W-Ta superalloy by studying the deformation mechanism, segregation tendency and stacking fault energy

基于变形机制、合金元素偏聚和层错能研究单晶Co-Al-W-Ta高温合金的蠕变性能

 

 

ACTA

Vol. 214,1 Aug. 2021, 116978

1. High pressure effect on the substructure and hardness of IF steel during martensitic transformation

高压对IF钢马氏体相变组织和硬度的影响

 

Zuohua Wang, Haidong Sun, Changji Li, Ning Liu, Shuai Zhang, Pinwen Zhu, Dongli Yue, Hongwang Zhang

H. Zhanghwzhang@ysu.edu.cn(燕山大学)

https://doi.org/10.1016/j.actamat.2021.116978

 

摘要

我们对1050°C保温30 min,随后10°C/s冷却至室温的IF钢进行了1- 5GPa等静压处理,并研究了这一过程中的组织演化和硬化。实验结果表明,材料中形成了典型的板条马氏体,硬度从80HV大幅提高至780HV。马氏体表现出板条束-板条块-板条的层级结构,与奥氏体之间遵循经典K-S取向关系。压力对马氏体变体的倾向和尺寸有调控作用。当压力从1 GPa增加到5 GPa时:(1)单变体马氏体半条块逐渐被同一Bain组的双变体马氏体半条块取代 2)与孪晶有关的变体逐渐增加(3)异体厚度从微米级减小到纳米级。我们假设界面强化和位错强化的贡献可进行线性叠加,对硬化机制进行了分析。以上研究表明,高压作为一种不依赖合金元素的马氏体相变调控方法,具有巨大的开发潜力

向上滑动阅览英文摘要

In the present investigation, the microstructure and hardening of an IF steel after one thermal cycle (heating to 1050°C and holding for 30 min followed by 10°C/s cooling to room temperature) under hydrostatic pressure of 1-5 GPa were studied. Experimental results show that typical lath martensite was induced, giving rise to significant hardening from 80 to 780 HV. The lath martensite shows hierarchical packet-block-lath structure and obeys the classical K-S orientation relationship between martensite and austenite. High pressure influences the propensity and size of martensitic variants. As the pressure increases from 1 to 5 GPa: 1) single-variant blocks gradually replace those with dual-variants of same Bain group; 2) twin-related variants become predominant; 3) variants decrease their thickness from micron- to nano-scale. The hardening mechanism was analyzed assuming a linear additivity of carbon-independent contributions from (block) boundary strengthening and (forest) dislocation strengthening. High pressure was proposed as an effective method to widely tune the martensitic transformation independent of alloy element, showing potential scientific and technological importance.

 

 

ACTA

Vol. 214,1 Aug. 2021, 117009

2. Interaction between hydrogen and solute atoms in {10-12} twin boundary and its impact on boundary cohesion in magnesium

{10-12}孪晶界处氢与溶质原子的相互作用及其对晶界结合力的影响

 

Zhifeng Huang, Jian-Feng Nie

J.-F. Niejianfeng.nie@monash.edu

https://doi.org/10.1016/j.actamat.2021.117009

 

摘要

氢是镁合金中常见的杂质或添加元素,对于沿晶界的裂纹扩展有重要影响。关于氢原子与晶界偏聚的其他合金元素间的相互作用及其对镁合金界面结合力的影响目前尚不清楚。我们通过第一性原理计算,对氢与Mg合金中常见的18种合金元素在{10-12}孪晶界的相互作用,及其对{10-12}孪晶界结合力的影响进行了研究。结果表明,氢倾向于与Mg晶格和孪晶界中的LiCaMnZrYLaPrNdSmGdTbDyHo等溶质原子结合,而不易与AlSnBiZnAg结合。因此,当{10-12}孪晶界处存在AlBiZnAg等元素时,氢不易向孪晶界处偏聚;而当孪晶界处已有 LiCaMnZrYNd等元素的偏聚时,氢很容易与他们形成氢-溶质原子对。偏聚溶质原子及其与氢原子的相互作用对孪晶界结合力的增强或减弱与Mg原子和偏聚溶质原子间的电子相互作用密切相关。MnZrYNd等原子在没有氢偏聚的条件下,由于溶质原子d电子与Mg原子p电子间的强烈相互作用,可以显著增强孪晶界的结合力。然而,与氢原子形成原子对后,发生的电子转移会减弱这种强化效果,从而使界面的抗断裂能力发生劣化。本研究从氢与合金元素相互作用的角度揭示了氢致界面断裂,这对于深入理解镁合金中的氢脆具有重要意义

向上滑动阅览英文摘要

Hydrogen is a common impurity or artificially added element in magnesium alloys and is generally known to assist crack propagation along grain boundaries. However, how hydrogen atoms interact with atoms of other alloying elements segregated to grain boundaries and its impact on grain boundary cohesion of Mg alloys are still unclear. In this work, interactions between hydrogen and each one of the 18 alloying elements commonly used in Mg alloys in {10-12} twin boundary, and their impacts on interfacial cohesion of the {10-12} twin boundary are investigated using first-principles calculations. It is found that hydrogen is unlikely to bond with Al, Sn, Bi, Zn, or Ag, while H prefers to bond with solute such as Li, Ca, Mn, Zr, Y, La, Pr, Nd, Sm, Gd, Tb, Dy, or Ho in the Mg lattice and in the twin boundary. As a result, hydrogen is unlikely to segregate to a {10-12} twin boundary that has the presence of Al, Bi, Zn, or Ag, while H atoms will be attracted to a twin boundary to form a hydrogen-solute cluster around the solute such as Li, Ca, Mn, Zr, Y, or Nd that is already present in the twin boundary. The strengthening or weakening effects of segregated solute atoms and their interactions with hydrogen atoms on the twin boundary cohesion are found to be closely related to the electronic interactions of atoms of Mg with those of the segregated solutes. Mn, Zr, Y, or Nd can significantly enhance the twin boundary cohesion, in the absence of any hydrogen segregation in the boundary, because of the strong interactions between the d electrons of atoms of the solute element and the p electrons of Mg atoms. However, electron transfer from the solute atoms to hydrogen atoms will reduce the strengthening effect, making the boundary less resistant to fracture. This work uncovers the hydrogen-induced interfacial fracture from the perspective of the interactions of hydrogen and alloying elements, which is important for understanding hydrogen embrittlement in Mg alloys.

 

 

ACTA

Vol. 214,1 Aug. 2021, 117005

3. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification

凝固过程中枝晶生长和气孔演化的多相物理模型

 

Ang Zhang, Zhipeng Guo, Bin Jiang, Jinglian Du, Cuihong Wang, Guangsheng Huang, Dingfei Zhang, Feng Liu, Shoumei Xiong, Fusheng Pan

A. Zhangangzhang@cqu.edu.cn(重庆大学/清华大学)

B. Jiang jiangbinrong@cqu.edu.cn(重庆大学)

https://doi.org/10.1016/j.actamat.2021.117005

 

摘要

气孔缺陷会极大地劣化铸件的力学性能。本研究中,我们建立了固--气多相场晶格-玻尔兹曼模型来描述凝固过程中复杂的多相相互作用。模型放宽了纯金属体系假设,简化了气泡形状和纯扩散条件,可以考虑固相生长、气泡运动、界面变形、成分输运、熔体流动以及合金溶质和溶解气体的配分。我们从质量守恒、双相模型映射、气泡动力学等方面对模型进行了验证。通过将其与其他四种模型以及实验进行比较,进一步评价了模型的有效性。模型成功地描述了镁合金中气孔与枝晶间的相互作用。我们通过定量分析熔体过冷度、界面流动性、气泡压力等特征参数对相分数的影响,深入讨论了多相平衡问题。该模型是对现有模型的补充,特别适合用于涉及固--气多相的复杂问题

向上滑动阅览英文摘要

 

Gas porosity is one of the most detrimental defects that can considerably deteriorate mechanical properties of casting parts. Simulating the interaction between gas porosity and solidifying microstructure is challenging due to multiphase and multiphysical characteristics. In this work, a solid-liquid-gas multiphase-field lattice-Boltzmann model is developed to describe the complex multiphase interaction during solidification. The model relaxes the assumption of pure metal system, simplified bubble shape and pure diffusion condition. It can consider solid growth, bubble motion, interface deformation, component transport, melt flow, and partition of both alloy solute and dissolved gas species. The model is validated in terms of mass conservation, mapping operation to the two-phase model, Laplace pressure condition, and bubble dynamics. The effectiveness of the model is further evaluated by comparing with other four models and experiments. The model is successfully used to describe the interaction between gas porosity and magnesium dendrite. The dependence of phase fractions on the characteristic parameters including melt undercooling, interface mobility coefficient and internal bubble pressure is quantified to explore the multiphase equilibrium. The proposed model can be regarded as complementary to the

previous models and it is suitable for addressing the problems involving the solid-liquid-gas multiphase and multiphysical characteristics

.

 

 

ACTA

Vol. 214,1 Aug. 2021, 117020

4. Origins of size effects in initially dislocation-free single-crystal silver micro- and nanocubes

无位错单晶银微纳米立方体中尺寸效应的原因

 

Claire Griesbach, Seog-Jin Jeon, David Funes Rojas, Mauricio Ponga, Sadegh Yazdi, Siddhartha Pathak, Nathan Mara, Edwin L. Thomas, Ramathasan Thevamaran

R. Thevamaranthevamaran@wisc.edu

https://doi.org/10.1016/j.actamat.2021.117020

 

摘要

我们通过多步形核-长大工艺制备得到了无位错的银纳米立方,该材料在随后的微柱压缩试验中表现出了惊人的屈服强度——高达银理论强度的四分之一。材料极高的强度和屈服瞬间应变是单晶样品位错自发形核的结果。若样品微柱是通过聚焦离子束制备的,则压缩时不会发生剧烈的应变爆发,其屈服强度只有对比组样品的四分之一。无论测试前样品的缺陷状态如何,尺寸效应都很明显——屈服强度随着样品尺寸的减小而增加。由于位错贫乏和单源机制都不能解释尺寸效应对无位错样品屈服强度的影响,因此我们通过实验观测和分子静力学模拟从位错形核机制的角度进行了研究。研究表明,破坏材料对称性的因素,如表面缺陷、边缘圆度、样品形状或高空位浓度,都会影响位错形核,从而导致尺寸对无位错样品的屈服强度产生影响

向上滑动阅览英文摘要

We report phenomenal yield strengths—up to one-fourth of the theoretical strength of silver—recorded in microcompression testing of initially dislocation-free silver micro- and nanocubes synthesized from a multistep seed-growth process. These high strengths and the massive strain bursts that occur upon yield are results of the initially dislocation-free single-crystal structure of the pristine samples that yield through spontaneous nucleation of dislocations. When the pristine samples are exposed to a focused ion-beam to fabricate pillars and then compressed, the dramatic strain burst does not occur, and they yield at a quarter of the strength compared to the pristine counterparts. Regardless of the defect-state of the samples prior to testing, a size effect is apparent—where the yield strength increases as the sample size decreases. Since dislocation starvation and the single-arm-source mechanisms cannot explain a size effect on yield strength in dislocation-free samples, we investigate the dislocation nucleation mechanisms controlling the size effect through careful experimental observations and molecular statics simulations. We find that intrinsic or extrinsic symmetry breakers such as surface defects, edge roundness, external sample shape, or a high vacancy concentration can influence dislocation nucleation, and thus contribute to the size effect on yield strength in initially dislocation-free samples.

 

 

ACTA

Vol. 214,1 Aug. 2021, 117021

5. Representative volume elements for plasticity and creep measured from high-resolution microscale strain fields

基于微观应变场的高分辨表征测量材料塑性和蠕变的代表体积元

 

R.B. Vieira, H. Sehitoglu, J. Lambros

J. Lambroslambros@illinois.edu

https://doi.org/10.1016/j.actamat.2021.117021

 

摘要

均匀化方法被广泛应用于放大显微尺度的数值结果,以预测材料的宏观性能。均匀化通常是基于代表体积元(RVE)进行的,因此,准确测量RVE尺寸和阐明RVE尺寸的影响因素是材料建模成功的关键。本研究中,我们通过不同参数条件下的塑性和蠕变实验对奥氏体不锈钢的RVE尺寸进行了实验测定。我们通过高分辨率数字图像关联(DIC)方法,对材料在微观尺度上的残余应变不均匀性进行了识别。此外,结合背散电子电子衍射(EBSD)获取的材料的表面组织信息,可以进一步对晶界附近的局域应变进行区分,从而对引起应变积累的变形机制进行定量分析。最后,我们通过对比不同加载参数下的RVE尺寸,以及局部正应变和剪应变的相对比例,研究了晶界滑移与应变不均匀性之间的关系。高温下,晶界滑移是材料的主要变形机制,此时RVE尺寸约为平均晶粒尺寸的4-6倍,明显小于不明显发生滑移的样品(约为平均晶粒尺寸的10)

向上滑动阅览英文摘要

Homogenization techniques have been widely used in upscaling microscale numerical results to predict the macroscopic response of materials. Often homogenization is based on the concept of a representative volume element (RVE) and thus, measuring the RVE size and understanding what factors influence it are key elements in successful material modeling. Here, the size of the RVE for an austenitic stainless steel alloy is experimentally determined under, both separately and combined, plasticity and creep loading conditions with varying parameters (namely stress, temperature, and creep hold time). We use a high-resolution optical digital image correlation (DIC) methodology capable of discerning residual strain inhomogeneities at the microstructural level. Furthermore, by combining the strain results from DIC with surface microstructural information from electron backscatter diffraction (EBSD), the localized strains near grain boundaries can be isolated allowing for quantitative observations related to the deformation mechanisms responsible for strain accumulation. Finally, by comparing the results for RVE size and localized normal to shear strain ratios for different combinations of loading parameters, the relationship between grain-boundary sliding and the resulting heterogeneity of the strain field is explored. Cases where grain boundary sliding was the dominant deformation mechanism (i.e., at elevated temperature) had considerably smaller RVE sizes (from 4 to 6 times the average grain size) when compared to samples where sliding was not as prevalent (around 10 times the average grain size).

 

 

 

ACTA

Vol. 214,1 Aug. 2021, 117015

6. Role of the local stress systems on microstructural inhomogeneity during semisolid injection

铸造过程中局部应力对微观组织不均匀性的影响研究

 

S. Bhagavath, Z. Gong, T. Wigger, S. Shah, B. Ghaffari, M. Li, S. Marathe, P.D. Lee, S. Karagadde

P.D. Leepeter.lee@ucl.ac.uk 

S. Karagaddes.karagadde@iitb.ac.in

https://doi.org/10.1016/j.actamat.2021.117015

 

摘要

高压金属铸造是一个冷却速率和压强变化很大的动态过程,这导致在铸造过程中同一件铸件的不同部分往往具有不同的固相状态和形变特征。工艺参数及参数间复杂的相互作用共同决定了凝固组织中的缺陷。本研究中,我们通过快速同步X射线成像技术对铝合金高压压铸过程中,研究了固态体积分数、加载状态和熔体流动对局部组织不均匀性的影响。虽然已有文献中报导的原位变形速率可达10 μm/s,但我们对更快填充和凝固条件下(~100 μm/s)的过程进行了研究。结果表明,当固态体积分数较低时,熔体的变形具有以下两种典型特征:(1)中间晶粒尺寸较大,近器壁晶粒尺寸较小,(2)由于Cu在液相中的富集导致在固液界面附近发生重熔。我们对固态体积分数较大的样品进行了非原位扫描和数字图像分析,揭示了基于局部应力状态、微观组织和补缩的孔隙形成机制。我们发现熔体可以分为具有以下四种不同特征的区域:(1)塞流区 (2)致密浆料区 (3)剪切区 (4)块体区。以上研究对于压铸过程中不同区域缺陷形成的数值模拟具有指导意义

向上滑动阅览英文摘要

 

High pressure metal die casting is an extremely dynamic process with widely ranging cooling rates and intensifying pressures, resulting in a wide range of solid fractions and deformation rates simultaneously existing in the same casting. These process parameters and their complex interplay dictate the formation of microstructural solidification defects. In this study, fast synchrotron X-ray imaging experiments simulating high pressure die casting of aluminium alloys were conducted to investigate the effect of solid fraction, loading conditions and semisolid flow on local microstructural inhomogeneity. While most of the existing literature in this field reports speeds up to 10 μm/s for in situ deformation, the present work captures much faster filling and solidification, at speeds closer to 100 μm/s and at different solid fractions. Semisolid deformation of low solid fractions reveals two typical microstructural features: (i) coarser grains in the middle and finer ones near the walls, and (ii) remelting near the solid-liquid interface due to Cu enrichment in the liquid by the flow. Ex situ scans and digital image correlation analysis of the higher solid fraction samples reveal a porosity formation mechanism based on the local state of stresses, microstructure and feeding. Four different characteristics were identified: (i) plug flow, (ii) dead zone (densified mush), (iii) shear and (iv) bulk zones. These insights will be used to develop zone-specific strategies for the numerical modelling of defect formation during die casting.

 

 

ACTA

Vol. 214,1 Aug. 2021, 116990

7. Segmentation of experimental datasets via convolutional neural networks trained on phase field simulations

利用相场模拟训练的卷积神经网络实现对实验数据集的图像分割

 

Jiwon Yeom, Tiberiu Stan, Seungbum Hong, Peter W. Voorhees

S. Hongseungbum@kaist.ac.kr

https://doi.org/10.1016/j.actamat.2021.116990

 

摘要

对大型图像数据集的快速分析能力对于先进材料的表征和设计至关重要,而图像分割是分析过程中最主要和耗时的步骤。卷积神经网络(CNNs)是一种很有前景的分割方法。然而这一方法的主要难点在于前期需要人工地对数据集进行分类和标记,从而实现对CNN算法的训练过程。本研究中,我们发现仅使用简单的相场模拟对CNN算法进行训练,就可能实现对于实验数据集的图像分割。我们以Al-Zn合金原位凝固的实验图像为例,对相场模拟进行了参数化。以下训练能够帮助CNN算法有效地捕获图像中最重要的组织特征:(1)识别粒子和背景的弥散边缘 (2)噪声的优化 (3)去除图像边缘的粒子 (4) 枝晶上假象的识别。经过相场模拟图像训练的CNN算法对实验图像的分割准确率为99.3%,与直接在实验数据上训练的准确率相当。这种利用计算机生成图像训练算法的方法能够极快地快速新材料的设计研发

向上滑动阅览英文摘要

The ability to quickly analyze large imaging datasets is vital to the widespread adoption of modern materials characterization tools, and thus the development of new materials. Image segmentation can be the most subjective and time-consuming step in the data analysis workflow. A promising approach to segmentation of large materials datasets is the use of convolutional neural networks (CNNs). However, a major challenge is to obtain the images and segmentations needed for CNN training, since this requires segmentations performed by humans. We show that it is possible to segment experimental materials science data using a SegNet-based CNN that was trained only using simple phase field simulations. A test image from an in-situ solidification experiment of an Al-Zn alloy was used to parameterize the phase field simulations. The most important microstructural features required for the best CNN to “understand” the contents of the image are ranked as: (1) having training images with diffuse particle-background interfaces, (2) modifying the images by adding noise, (3) removing particles at the image edges, and (4) adding sub-images to the particles to account for the feint bands present on some dendrites. The CNN trained on phase field images segmented the experimental test image with 99.3% accuracy, comparable to CNNs trained on experimental data. This approach of using computationally generated images to train CNNs capable of segmenting experiments will accelerate the rate of materials design and discovery.

 

 

 

ACTA

Vol. 214,1 Aug. 2021, 117006

8. Studying the micromechanical behaviors of a polycrystalline metal by artificial neural networks

多晶金属微观力学行为的人工神经网络研究

 

Wei Dai, Huamiao Wang, Qiang Guan, Dayong Li, Yinghong Peng, Carlos N. Tomé

H. Wangwanghm02@sjtu.edu.cn(上海交通大学)

https://doi.org/10.1016/j.actamat.2021.117006

 

摘要

尽管基于物理的晶体塑性模型能够准确预测复杂载荷下的材料力学响应,但其较高的计算成本极大地限制了工程应用。另一方面,机器学习技术目前已被广泛用于数据的分析预测,且比传统技术在计算效率方面更具优势。本研究中,我们在OFHC铜中根据物理粘塑性自洽(VPSC)模型得到的数据库基础上,开发了人工神经网络(ANN)模型,并对模型进行了训练。结果表明,ANN模型能够成功地预测具有任意织构的多晶铜在不同加载路径下的微观力学行为,甚至其泛化能力超出了数据集的边界。ANN模型的精度没有显著降低,但计算效率大幅提升。因此,基于物理模型的人工神经网络在工程上具有极大的应用前景

向上滑动阅览英文摘要

Though physics-based crystal plasticity models are able to accurately predict the material response under complex loading conditions, the high computational cost limits their engineering applications. Machine learning techniques, widely used to understand and predict data trends, can provide advantageous computational efficiency over conventional numerical techniques. In the current work, an artificial neural network (ANN) model is proposed and trained based on the datasets generated by the physics-based viscoplastic self-consistent (VPSC) model on the material behavior of OFHC copper. The ANN model successfully captures the loading path-dependent micromechanical behavior of the copper polycrystals with arbitrary texture, even beyond the bounds of the generated dataset. The proposed ANN model, without any major loss in accuracy, can greatly improve the computational efficiency. It can be envisioned that the engineering application of the physics-based model becomes promising through alternatively using the ANN model, which treats the underlying complex physics as a blackbox.

 

 

ACTA

Vol. 214,1 Aug. 2021, 116986

9. Tailoring the metastable reversed austenite from metastable Mn-rich carbides

通过富锰碳化物调控亚稳逆相变奥氏体

 

Yuantao Xu, Wei Li, Hao Du, Huisheng Jiao, Binggang Liu, Yun Wu, Wei Ding, Yi Luo, Yihong Nie, Na Min, Wenqing Liu, Xuejun Jin

W. Liweilee@sjtu.edu.cn(上海交通大学)

X. Jinjin@sjtu.edu.cn(上海交通大学)

https://doi.org/10.1016/j.actamat.2021.116986

 

摘要

我们设计了两步回火-配粉工艺,用于调控冷轧中锰钢中的碳、锰等奥氏体稳定元素。材料经450℃回火0.5h1h后,三维原子探针表征表明,存在大量的亚稳态富锰M12C析出和NiAl纳米析出,且大量的碳在NiAl析出附近的界面和位错上偏聚。M12C碳化物与位错/界面之间的竞争抑制了亚稳态M12C向更稳定碳化物的转变。在随后630℃0.5h的配分过程中,亚稳M12C溶解,在M12C上形核的细小奥氏体中呈现出明显的Mn梯度。亚稳态奥氏体继承了M12C中的大量锰和碳(Mn: 18.1 at.% C: 1.56 at.%),且分布弥散(9.8 μm−2)和尺寸细小(50-200 nm)。由于这些奥氏体兼具硬质和可相变的特点,因此同时为材料提供了Orowan强化和形变诱导马氏体相变(TRIP)强化,力学性能可达屈服强度~1350 MPa,总延伸率~30%。综上所述,我们提出了一种有创新性的高强度钢设计策略,使得亚稳奥氏体除了TRIP效应外,还能够通过第二相强化材料

向上滑动阅览英文摘要

A two-steps tempering-partitioning process is designed for redistributing carbon and austenite stabilizer such as manganese in a cold rolled medium-manganese steel. After tempering at 450℃ for 0.5h and 1h, a large number of metastable Mn-rich M12C carbides and high density of NiAl-type nanoparticles were found, and the segregation of carbon at the dislocations/interfaces around NiAl precipitates was revealed by 3D atom probe tomography (APT). The competition between the M12C carbides and the dislocations/interfaces for carbon inhibits transformation of the metastable M12C carbides to more stable carbides. During the following partitioning at 630℃ for 0.5h, the metastable Mn-rich M12C dissolved and the fine reversed austenite nucleating on the metastable M12C carbides exhibits a sharp gradient Mn distribution. The tailored metastable austenite inherited from metastable M12C carbide shows strong enrichment of Mn and C (Mn: 18.1 at.%, C: 1.56 at.%), dispersed distribution (9.8 μm−2) and fine size (50-200 nm). With the nature of both hard particle and transitionable phase, the austenite couples Orowan strengthening and transformation induced plasticity (TRIP) assisted work hardening. Outstanding dynamic mechanical properties (yield strength: 1350 MPa, total elongation: 30%) were achieved due to this microstructure. Here we report a strategy for the design of ultrahigh-strength steels by making metastable austenite serve as a strengthening second phase in addition to the TRIP effect.

 

 

ACTA

Vol. 214,1 Aug. 2021, 117019

10. Understanding creep of a single-crystalline Co-Al-W-Ta superalloy by studying the deformation mechanism, segregation tendency and stacking fault energy

基于变形机制、合金元素偏聚和层错能研究单晶Co-Al-W-Ta高温合金的蠕变性能

 

N. Volz, F. Xue, C.H. Zenk, A. Bezold, S. Gabel, A.P.A. Subramanyam, R. Drautz, T. Hammerschmidt, S.K. Makineni, B. Gault, M. Göken, S. Neumeier

N. Volznicklas.volz@fau.de

https://doi.org/10.1016/j.actamat.2021.117019

 

摘要

我们对Co-9Al-7.5W-2Ta单晶钴基高温合金在9509751000℃下的压缩蠕变性能进行了系统,揭示了温度和AlWTa等元素扩散速度对变形机制的影响。在所有的温度条件下,均能观测到两个蠕变率最小值,因此这种现象的变形机制应当是相似的。原子探针分析表明,蠕变过程中,γ′相中形成的层错处存在溶质元素偏析。密度泛函理论计算表明,WTa有向层错偏聚的趋势,且能显著降低层错能。高温下元素扩散加快,因此偏聚也加快。这使得合金的软化显著加快,因为偏聚能够在蠕变早期促进分位错切过γ′析出。透射电子显微镜表征证实了上述机制。因此,高温下析出体积分数的减小和扩散对分位错剪切γ′相的促进作用共同导致了材料蠕变性能的劣化。以上研究对高温合金设计具有指导意义

向上滑动阅览英文摘要

A systematic study of the compression creep properties of a single-crystalline Co-base superalloy (Co-9Al-7.5W-2Ta) was conducted at 950, 975 and 1000°C to reveal the influence of temperature and the resulting diffusion velocity of solutes like Al, W and Ta on the deformation mechanisms. Two creep rate minima are observed at all temperatures indicating that the deformation mechanisms causing these minima are quite similar. Atom-probe tomography analysis reveals elemental segregation to stacking faults, which had formed in the γ’ phase during creep. Density-functional-theory calculations indicate segregation of W and Ta to the stacking fault and an associated considerable reduction of the stacking fault energy. Since solutes diffuse faster at a higher temperature, segregation can take place more quickly. This results in a significantly faster softening of the alloy, since cutting of the γ’ precipitate phase by partial dislocations is facilitated through segregation already during the early stages of creep. This is confirmed by transmission electron microscopy analysis. Therefore, not only the smaller precipitate fraction at higher temperatures is responsible for the worse creep properties, but also faster diffusion-assisted shearing of the γ’ phase by partial dislocations. The understanding of these mechanisms will help in future alloy development by offering new design criteria.