本期包含金属材料领域论文10篇,涵盖了高温合金、钛合金、金属玻璃、铜合金、锆合金、钯合金及钢铁等领域,国内科研单位包括香港城市大学、中科院物理所、北京计算科学研究中心等(通讯作者单位)。
Vol. 195 金属领域目录
ACTA Vol. 195, 15 Aug. 2020, P555-570
32. A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy
形变镍基高温合金表面塑性应变与晶格取向差之间关系的统计性研究
A. Harte✉, M. Atkinson, M. Preuss, J. Quinta da Fonseca
A. Harte:allan.harte@ukaea.uk.
https://doi.org/10.1016/j.actamat.2020.05.029
摘要
电子背散射衍射(EBSD)是一种识别材料组织中应力集中和量化塑性应变的常用实验手段。但是,目前我们对于晶粒和亚晶粒之间的取向差随局部塑性应变的变化规律认识还很不足,需要进一步详细研究。本工作中,我们使用了高分辨数字化图像关联技术(HRDIC)测量了镍基高温合金表面亚微米尺度的塑性应变,应变量达到2%。我们在几百个晶粒中测量了晶粒/亚晶粒取向差和应力大小之间的关系。结果表明,尽管晶粒的平均塑性应变与晶格取向差呈正相关,但在相关关系存在较大的方差,这取决于所取向差的测量方式。晶粒应变的大小和晶粒取向参数(如施密德因子和泰勒因子)之间也没有本质上的相关性,这主要是由于介观尺度上的非晶形变带导致的。在本实验的应变水平上,取向差和塑性应变之间的关系受滑移和晶格扭转发展差异的影响,这种差异往往是由于局部晶粒相互作用和跨晶粒应变集中造成的。因此,尽管基于一些潜在的对于局部塑性的理解,测量某些取向差能更有效地反应塑性应变,但仅通过EBSD导出的取向差试图完全量化单个晶粒内部的塑性应变是不可能的。尽管如此,鉴于滑移带中的局部滑移导致的取向差仅在空间上随着滑移逐渐变化,这些发现对于使用连续介质力学在微观结构尺度上模拟多晶金属的变形状态具有重要意义。
英文摘要
Misorientation data from Electron Backscatter Diffraction (EBSD) is often used to identify strain localisation and quantify plastic strain at the microstructural scale. However, the exact relationship between local plastic strain and misorientation and how it changes at the grain and sub-grain level has not been studied in detail. We have used high resolution digital image correlation (HRDIC) to measure plastic strain at the sub-micron scale on the surface of a nickel superalloy strained to 2%. The strain values have been correlated to different misorientation measures at the grain and subgrain scale, over several hundreds of grains. We show that although the grain mean plastic strain is positively correlated to the lattice misorientation, there is a large scatter in the correlation, which depends on the misorientation measure used. There is also essentially nocorrelation between the magnitude of grain strain and grain orientation derived parameters like the Schmid factor and the Taylor factor, largely due to deformation bands at the mesoscale that are not crystallographic. At these strain levels, the relationship between misorientation and plastic strain is affected by the differences in how slip (discontinuous) and lattice rotation (continuous) develop, by local grain interactions and the development of transgranular strain localisation. It is therefore effectively not possible to quantify plastic strain within individual grains using EBSD derived misorientation values alone, although some measures of misorientation are more appropriate than others if there is an understanding of the underlying local plastic phenomena. Whereas slip is localised in slip bands, the misorientation varies smoothly in a manner that is only weakly spatially correlated to the slip. These fifindings have implications for the modelling of the deformed state of polycrystalline metals at the microstructural scale using continuum mechanics.
ACTA Vol. 195, 15 Aug. 2020, P597-610
33. Interactions between〈a〉dislocations and three-dimensional {11-22} twin in Ti
Ti中〈a〉位错与三维 {11-22} 孪晶的相互作用
Mingyu Gong, Shun Xu , Laurent Capolungo , Carlos N Tomé, Jian Wang✉
Jian. Wang: wangj6@gmail.com
https://doi.org/10.1016/j.actamat.2020.05.046
摘要
在Ti的形变过程中,经常会出现基底面或柱面上的位错和{11-22} 压缩孪晶。在本工作中,我们采用了晶体学分析和原子尺度模拟研究了两者之间的相互作用。对于三维{11-22}孪晶,我们首先研究了连接基体和孪晶中两个低指数面的7种可能的孪晶界。之后,我们主要聚焦于两个低能界面,即{11-22}M/T || {11-22}T/M 共格孪晶界(CTB)和 {-12-11}M/T || {-12-11}T/M。根据位错的特点和晶界的类型,我们定义了4种位错和孪晶界的相互作用。进一步地,我们应用晶体学分析,基于形变能力和弹性能变化预测了孪晶界上或穿过孪晶界的可能的位错反应,例如每种相互作用中一次孪晶、滑移传导和二次孪晶的形成和消失等。之后我们对选定应力下所有的相互作用进行了分子动力学模拟,以探究各类相互作用的动力学过程并对预测的位错反应进行检验。模拟结果表明,位错和某些面之间的相互作用可能导致在基面或柱面上形成二次孪晶和位错,并且模拟揭示了在孪晶中形成
dislocations on basal or prismatic planes and {11-22} compression twins are commonly activated in deformed Titanium (Ti). In the present work, their interactions are investigated by both crystallographic analysis and atomistic simulations. For a three-dimensional {11-22} twin, we firstly analyze seven possible twin boundaries (TBs) bonding two low index planes in matrix and twin. Next, we focus on the two lower energy boundaries,{11-22}M/T || {11-22}T/M coherent twin boundary (CTB) and {-12-11}M/T || {-12-11}T/M . Depending on dislocation character and boundary type, we define four types of interactions between dislocations and these TBs. Further, we predict possible dislocation reactions on/across TBs using crystallographic analysis according to the deformation compatibility and the change in elastic energy, such as twinning/detwinning of the primary twin, slip transmission and secondary twinning, for each type of interaction. Molecular dynamics (MD) simulations are then conducted for all interactions under pre-selected loadings in order to explore the dynamic process associated with each of these interactions and examine the predicted reactions. MD simulations predict that the interaction between dislocations and some facets can lead to the formation of secondary twins and dislocations on basal or prismatic planes in twins, and reveal the possibility of forming
Y. Yang: yonyang@cityu.edu.hk, 香港城市大学
M.X.Pan: panmx@aphy.iphy.ac.cn,中科院物理所;中国科学院大学;松山湖材料实验室
P.F. Guan: pguan@csrc.ac.cn,北京计算科学研究中心
S. Srinivasan, C. Kale, B.C. Hornbuckle, K.A. Darling, M.R. Chancey, E. Hernández-Rivera,
Y. Chen, T.R. Koenige, Y.Q. Wang, G.B. Thompson, K.N. Solanki✉
B. Christiaen, C. Domain, L. Thuinet, A. Ambard, A. Legris✉
在这项工作中,我们采用了一系列的实体动力学蒙特卡洛模拟,辅以分析模型,试图合理解释与高纯度再结晶锆合金在辐照下的生长有关的若干实验事实。我们对实验现象的看法主要基于空位扩散各向异性,(即在基面方向的扩散比垂直于基面方向扩散更快),这是导致平行于基面形成 棱柱间隙型位错环的必要条件。辐照变形的加速与这种局部损伤密切相关。基于空位和间隙原子的各向异性扩散建立的分析模型可以有效解释实验现象。
In this work, we propose a series of Object Kinetic Monte Carlo simulations complemented by an analytical model that allows rationalizing a certain number of experimental facts related to the growth of high purity, recrystallized zirconium alloys under irradiation. Our vision of the phenomenon rests essentially on vacancy diffusion anisotropy (with faster diffusion in the basal planes than perpendicular to them) that is necessary to lead to the formation of layers of prismatic interstitial dislocation loops parallel to the basal plane. The acceleration of the deformation under irradiation and this localization of the damage are strongly connected. An analytical model developed using the concepts of difference of anisotropic diffusion between vacancies and interstitials makes it possible to account for the observed phenomena.