当前位置:首页 > 实用信息

钢的氢脆现象及其消除措施

2019-07-04 来源:格尔赛斯

        氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接)中进入钢材内部的微量氢(10-6量级)在内部残余的或外加的应力作用下导致材料脆化甚至开裂。在尚未出现开裂的情况下可以通过脱氢处理(例如加热到200℃以上数小时,可使内部氢减少)恢复钢材的性能。因此内氢脆是可逆的。
 

氢脆的机理

        在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹。

        在应力作用下,固溶在金属中的氢也可能引起氢脆。金属中的原子是按一定的规则周期性地排列起来的,称为晶格。氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于聚集在位错附近。金属材料受外力作用时,材料内部的应力分布是不均匀的,在材料外形迅速过渡区域或在材料内部缺陷和微裂纹处会发生应力集中。在应力梯度作用下氢原子在晶格内扩散或跟随位错运动向应力集中区域。由于氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,导致了脆断。 另外,由于氢在应力集中区富集促进了该区域塑性变形,从而产生裂纹并扩展。还有,在晶体中存在着很多的微裂纹,氢向裂纹聚集时有吸附在裂纹表面,使表面能降低,因此裂纹容易扩展。

        某些金属与氢有较大的亲和力,过饱和氢与这种金属原子易结合生成氢化物,或在外力作用下应力集中区聚集的高浓度的氢与该种金属原子结合生成氢化物。氢化物是一种脆性相组织,在外力作用下往往成为断裂源,从而导致脆性断裂。
 

消除措施

        (1)减少金属中渗氢的数量,必须尽量减少高强度/高硬度钢制紧固件的酸洗,因为酸洗可加剧氢脆。在除锈和氧化皮时,尽量采用喷砂抛丸的方法,若洛氏硬度等于或大于HRC 32的紧固件进行酸洗时,必须在制定酸洗工艺时确保零件在酸中浸泡的时间最长不超过10分钟。并应尽量降低酸液的浓度,并保证零件在酸中浸泡的时间不超过10分钟;在除油时,采用清洗剂或溶剂除油等化学除油方式,渗氢量较少,若采用电化学除油,先阴极后阳极,高强度零件不允许用阴极电解除油;在热处理时,严格控制甲醇和丙烷的滴注量;在电镀时,碱性镀液或高电流效率的镀液渗氢量较少。

        (2)采用低氢扩散性和低氢溶解度的镀涂层一般认为,在电镀Cr、Zn、Cd、Ni、Sn、Pb时,渗入钢件的氢容易残留下来,而Cu、Mo、Al、Ag、Au、W等金属镀层具有低氢扩散性和低氢溶解度,渗氢较少。在满足产品技术条件要求的情况下,可采用不会造成渗氢的涂层,如机械镀锌或无铬锌铝涂层,不会发生氢脆,耐蚀性高,附着力好,且比电镀环保。

        (3)镀前去应力和镀后去氢以消除氢脆隐患若零件经淬火、焊接等工序后内部残留应力较大,镀前应进行回火处理,回火消除应力实际上可以减少零件内的陷阱数量,从而减轻发生氢脆的隐患。

        (4)控制镀层厚度,由于镀层覆盖在紧固件表面,镀层在一定程度上会起到氢扩散屏障的作用,这将阻碍氢向紧固件外部的扩散。当镀层厚度超过2.5μm时,氢从紧固件中扩散出去就非常困难了。因此硬度<32HRC的紧固件,镀层厚度可以要求在12μm;硬度≥32HRC的高强度螺栓,镀层厚度应控制在8μmmax。这就要求在产品设计时,必须考虑到高强度螺栓的氢脆风险,合理选择镀层种类和镀层厚度。

更多实用方法及工具敬请关注微信公众号“格尔赛斯”。
 
(部分资料来源于网络,如有侵权请私信删除。)